

PRODUCTIVITY, PROFITABILITY, AND SEED QUALITY OF SOYBEAN (*GLYCINE MAX*) AS AFFECTED BY NUTRIENT MANAGEMENT THROUGH THE NUTRIENT OMISSION TECHNIQUE

Dishita Aseri*, S.C. Meena and Pooja Kumari Meena

Maharana Pratap University of Agriculture and Technology, Udaipur (Rajasthan) - 313 001, India

*Corresponding author E-mail: dishitaaseri@gmail.com

(Date of Receiving : 24-10-2025; Date of Acceptance : 03-01-2026)

A field experiment was conducted during the *kharif* season, 2023 at the Instructional Farm, Rajasthan College of Agriculture, Udaipur, to evaluate the effect of nutrient management on the productivity, profitability and seed quality of soybean (*Glycine max* L.) using the nutrient omission technique. Eleven treatments, including a complete nutrient package (NPK + S + Zn + B + PSB + *Rhizobium*) and different nutrient omission combinations, were laid out in a randomized block design with three replications.

ABSTRACT

Application of the full nutrient package (T_1) significantly improved vegetative growth, including plant height, branches per plant, and dry matter accumulation. Yield attributes such as pods per plant, grains per pod, and test weight were also maximized under T_1 , resulting in the highest seed yield ($1793.1 \text{ kg ha}^{-1}$), haulm yield ($2963.1 \text{ kg ha}^{-1}$), and biological yield ($4756.2 \text{ kg ha}^{-1}$). Seed quality improved with maximum protein (40.29%) and oil content (20.25%) recorded under balanced fertilization. Economic analysis revealed the highest net profit (Rs. $67,582 \text{ ha}^{-1}$) for T_1 , while the maximum benefit-cost ratio (2.32) was observed under T_8 .

Keywords: growth, nutrient omission, yield, seed quality, soybean.

Introduction

Soybean (*Glycine max* [L.] Merrill) is a major leguminous oilseed crop valued for its high protein content (~42%) and importance in food, feed, and edible oil security. Despite its high yield potential, productivity remains low due to rainfed conditions, climatic variability, and poor adoption of scientific crop management practices. Imbalanced nutrient management, with excessive reliance on nitrogen and phosphorus and neglect of secondary and micronutrients, has led to widespread deficiencies of potassium, sulfur, zinc, and boron, adversely affecting yield and seed quality. The nutrient omission technique is an effective approach to identify yield-limiting nutrients and improve fertilizer use efficiency under rainfed systems (Majumder *et al.*, 2023). Hence, the present study aimed to evaluate the effect of nutrient management using the nutrient omission technique on productivity, profitability, and seed quality of soybean

for developing balanced and sustainable nutrient recommendations.

Materials and Methods

The experiment was conducted during *kharif* 2023 at Block C₇ of the Instructional Farm, Rajasthan College of Agriculture, Udaipur (24°35' N, 74°42' E; 579.5 m amsl) located in Agro-climatic Zone IVa (Sub-humid Southern Plain and Aravalli Hills). The region has a subtropical climate, receiving 500.9 mm well-distributed rainfall during the crop season, with maximum and minimum temperatures ranging from 29.2–34.4 °C and 16.2–23.9 °C, respectively. The experimental soil (0–15 cm) was clay loam in texture, mildly alkaline (pH 8.17), low in organic carbon (0.62%), medium in available N, P, K and deficient in sulfur and some micronutrients. The experiment consisted of 11 treatments laid out in a Randomized Block Design with three replications (Table 1) involving a complete nutrient package and omission of individual or combined nutrients including

biofertilizers along with an absolute control. Soybean variety JS-9560 was sown at 80 kg ha⁻¹ with 30 × 10 cm spacing, and all agronomic practices, including nutrient application, weed, pest, and irrigation management, were followed as per recommendations. Observations on growth, yield attributes, yield, quality and economics were recorded using standard procedures.

Table 1: Treatment details

T ₁	(NPK+ S+ Zn+ B+ PSB + Rhizobium)
T ₂	B omission (T ₁ - B)
T ₃	Zn omission (T ₁ - Zn)
T ₄	S omission (T ₁ - S)
T ₅	K omission (T ₁ - K)
T ₆	P omission (T ₁ - P)
T ₇	N omission (T ₁ - N)
T ₈	Secondary and Micronutrient omission (T ₁ - S - Zn - B)
T ₉	P and K omission (T ₁ - PK)
T ₁₀	Bio-fertilizer omission (T ₁ - PSB + Rhizobium)
T ₁₁	Absolute Control

Results and Discussion

Growth, yield attributes and yield

The results showed (Table 2) that nutrients application at recommended rates maintained superiority in respect yield and yield components such as plant height, number of branches plant⁻¹, number of pods plant⁻¹, number of grains pod⁻¹, dry matter accumulation, and test weight. However, this treatment failed to show any significant variation in harvest index. N omission resulted in more reduction in the yield and yield attributes such plant height, number of pods plant⁻¹, number of grains pod⁻¹, dry matter accumulation and test weight highlighting the importance of N in soybean production. The increase in soybean yields with the application of NPK fertilizers as compared to micronutrients application does not increase seed yield. The results indicate low seed yield was achieved for the treatment to which PK was applied (*i.e.* N omitted plot). This shows that N was the most seed yield limiting nutrient in this experiment. The absence of nitrogen before or at sowing results in highly reduced seed yield in soybean. N application increased yield and yield components of soybean. These results are in conformity with Atnafu *et al.*, 2021. P omission resulted in reduction of (27.68 per cent) in seed yield, (19.68 per cent) in biological yield in soybean crop. These findings were reported in the results of Kumar *et al.*, 2017.

The reduction in yields and yield components due to B omitted was marginal and statistically non-significant in soybean crop. These results are similar with the findings of Sherchan *et al.*, 2004 who reported

that response of boron application on maize grain production was found not significant.

The treatments were omitted with B, Zn, S, P, N, K alone or S, Zn, B and PK, Zn, S, B, PSB and Rhizobium in combination recorded the lower values of yield and yield components. This might be due to lower content of nutrients in the plant and reduced yields of soybean. These results are in conformity with Paramasivan *et al.*, 2012.

Quality parameters

The presented in table reveals that the protein content and oil content in seeds of soybean maximum by the application of NPK + S + Zn + B + PSB + Rhizobium (40.29 and 20.25 per cent), respectively which was significantly higher over control. The protein content of seed is related to its nitrogen content, so when, the nitrogen is omitted quality of soybean was reduced by (6.55 per cent). Application of the recommended dose of urea significantly increased the oil and protein contents and best quality of soybean with high yield this was similarly reported by Alam *et al.*, 2009.

The effect of sulphur on oil content of soybean are given in Table 3. Seed oil content was significantly influenced by of sulphur. The omission of sulphur significantly reduce oil content by (13.47 per cent) but, it was at par with treatment T₂ and T₃ and lowest was observed in control. These findings are agreed with the results of Kesare *et al.*, 2015.

The protein and oil content of soybean were also significantly affected by S and B (Table 3). However, they showed better response to S application than to B. The protein and oil content both increased by application of S along with NPK, micronutrient and bio fertilizers. With concurrent application of S and B (the combination which produced the best yield), when sulphur is omitted 4.11 per cent decrease in protein and 13.47 per cent decrease in oil content while omission of boron alone didn't affect as much in protein and oil content of soybean as compared to T₁. Beneficial effects of S and B on oil and protein content of soybean can be understood by their crucial involvement in synthesis of these quality attributes (Brady 1990, Malewar *et al.*, 2001, Cirak *et al.*, 2006, Singh *et al.*, 2006 and Kumar *et al.*, 2009).

Economics

The data presented in (Table 4.23) showed that application of T₁ (NPK + S+ Zn + B + PSB + Rhizobium) gave highest net return as compared to T₇ (T₁-N). The omission of sulphur, zinc, boron, treatment T₈ gave the highest B-C ratio as compared to nitrogen

omitted treatment, similar results was obtained by Dass *et al.*, 2022.

Conclusion

Balanced nutrient management through the nutrient omission technique significantly improved soybean productivity, profitability, and seed quality. The complete nutrient package (NPK + S + Zn + B +

PSB + *Rhizobium*) produced the highest yield, seed quality, and net returns, while nitrogen was identified as the most yield-limiting nutrient. Sulphur played a key role in enhancing oil and protein content. Overall, the nutrient omission technique proved effective for identifying critical nutrient deficiencies and developing balanced, sustainable nutrient management strategies for soybean.

Table 2 : Effect of nutrient management growth and yield attributes of soybean.

Treatments	Plant height (cm)	DMA (g/plant)	Number of branches plant ⁻¹	Number of pods plant ⁻¹	Number of grains pod ⁻¹	Test weight (g/1000 seeds)	yield (kg ha ⁻¹)			Harvest index (%)
							Seed	Haulm	Biological	
T₁	57.13	34.40	9.20	107.10	3.00	132.60	1793.1	2963.13	4756.24	37.55
T₂	52.72	33.27	9.23	102.77	2.80	130.93	1607.7	2761.22	4368.90	37.08
T₃	52.50	31.40	8.77	101.90	2.77	130.07	1544.4	2743.99	4288.36	35.99
T₄	52.00	29.57	8.67	95.83	2.67	129.40	1525.0	2735.24	4260.26	35.94
T₅	47.63	27.43	8.30	91.73	2.57	126.40	1416.3	2584.57	4000.83	35.41
T₆	46.17	26.43	8.07	87.47	2.50	123.53	1404.3	2565.74	3970.04	35.37
T₇	38.22	25.77	7.97	83.63	2.43	120.00	1287.8	2359.60	3647.41	35.32
T₈	51.17	27.93	8.63	93.60	2.60	127.37	1514.2	2659.27	4173.44	36.33
T₉	39.33	26.13	7.30	85.63	2.37	121.37	1393.5	2481.10	3874.57	36.11
T₁₀	38.83	25.80	6.47	84.27	2.30	121.00	1347.4	2465.68	3813.07	35.43
T₁₁	38.00	24.47	6.37	81.63	2.27	118.30	1128.3	2088.42	3216.76	35.14
SE(m)	2.01	1.27	0.43	3.44	0.14	3.05	66.25	142.34	150.81	1.64
CD (p=0.5)	5.93	3.74	1.27	10.14	0.41	9.00	195.44	419.90	444.90	NS

Table 3 : Effect of nutrient management on quality and economics of soybean

Treatment	Quality parameters			Economics		
	Protein content in grain (%)		Oil content (%)	B/C ratio	Net return (Rs ha ⁻¹)	
T₁	40.29		20.25	2.14	67582	
T₂	39.45		19.36	1.89	58413	
T₃	39.43		19.03	2.03	57826	
T₄	38.69		17.85	1.94	56291	
T₅	38.98		19.07	1.62	49111	
T₆	38.96		18.42	1.69	49494	
T₇	37.81		18.84	1.32	41186	
T₈	38.93		17.88	2.32	58986	
T₉	38.88		18.81	1.76	49695	
T₁₀	38.87		18.49	1.43	44546	
T₁₁	37.69		17.80	1.97	42074	
SE(m)	0.30		0.42	0.1	3123	
CD (p=0.5)	0.89		1.23	0.3	9214	

Table 4 : Correlation coefficient and regression equation showing relationship between independent variable (x) and dependent variable (y) on mean basis

Dependent variable (y)	Independent variables (x)	Correlation coefficient (r)	Regression coefficient (b)	R	R ²	Y = a+b ₁ x ₁ +b ₂ x ₂ +b ₃ x ₃ ...+b _n x _n
Seed yield (kg ha ⁻¹)	X ₁ Haulm yield	0.981**	b ₁ 0.734	0.9935	98.71	Y=2126.851+0.7172x ₁ +3.8098x ₂ -67.6044x ₃ -30.3228x ₄ +9.7337x ₅ +22.7406x ₆
	X ₂ Pods/plant	0.934**	b ₂ 18.851			
	X ₃ Seeds pod ⁻¹	0.937**	b ₃ 723.745			
	X ₄ Test weight	0.935**	b ₄ 33.253			
	X ₅ Plant height	0.906**	b ₅ 22.677			
	X ₆ Plant dry matter	0.926**	b ₆ 49.139			

Haulm yield (kg ha ⁻¹)	X ₁	Biological yield	0.997**	b ₁	0.573	0.9978	99.56	Y=226.5828+0.6084x ₁ +2.996x ₂ +0.5982x ₃ -14.1782x ₄
	X ₂	Pods plant ⁻¹	0.911**	b ₂	24.573			
	X ₃	Plant height	0.986**	b ₃	130.772			
	X ₄	Plant dry matter	0.996**	b ₄	144.8076			

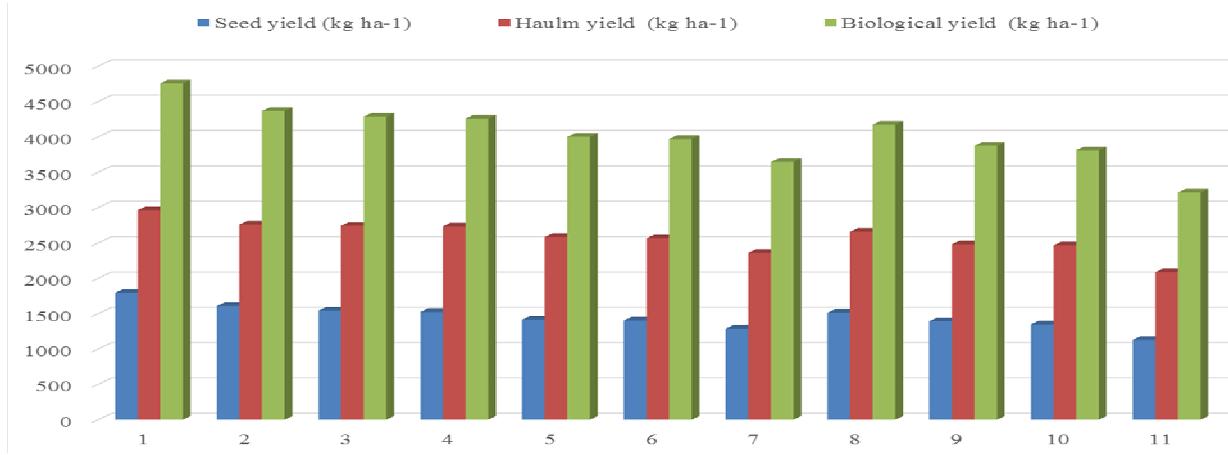


Fig. 1: Effect of nutrient management on yield of soybean

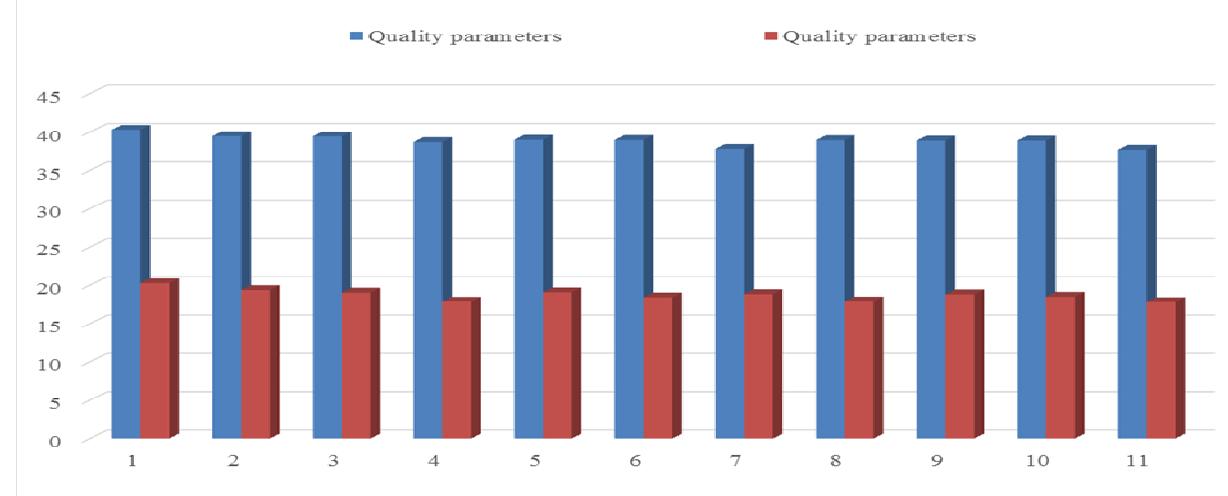


Fig. 2: Effect of nutrient management on quality parameters of soybean

Fig. 3: Effect of nutrient management on net return of soybean

Acknowledgement

The authors gratefully acknowledge the support and facilities provided by Rajasthan College of Agriculture, MPUAT, Udaipur, and the assistance of the Instructional Farm staff during the experiment.

References

Alam, M.A., Siddiqua, A., Choudhary M.A.H. and Pradhan, M.Y. (2009). Nodulation, yield and quality of soybean as influenced by integrated nutrient management. *Journal of Bangladesh Agriculture University*, **7**(2), 229-234.

Atnafu, O., Balemi, T. and Regassa, A. (2021). Effect of nutrient omission on grain yield and yield components of maize (*Zea mays* L.) at Kersa District, Jimma Zone, Southwestern Ethiopia. *International Journal of Agriculture Forestry and Fisheries*, **10**(1), 7-15.

Brady, N.C. (1990). Nature and properties of soils, 10th ed. McMillan Publishing Company, Inclusion. New York. pp. 338, 383.

Cirak, C., Serhat, O.M., Kudret, K., Emel, K. and Ali. G. (2006). Response of soybean (*Glycine max*) to soil and foliar applied boron at different rates. *Indian Journal of Agriculture Sciences*, **76**(10), 603-606.

Dass, A., Rajanna, G.A., Babu, S., Lal, S.K., Choudhary, A.K., Singh, R., Rathore, S.S., Kaur, R., Dhar, S., Singh, T. and Raj, R. (2022). Foliar application of macro and micronutrients improves the productivity, economic returns and resource-use efficiency of soybean in a semi-arid climate. *Sustainability*, **14**(10), 5825.

Kesare, V.K., Sakore, G.D. and Pharande, A.L. (2015). Effect of different levels of sulphur on yield and quality of soybean in inceptisol. *Trends in Biosciences*, **8**(10), 2513-2516.

Kumar, D., Sidhu, S.S., Sharma, K.N. and Singh, V. (2009). Influence of soil applied sulfur and boron on yield and quality parameters of soybean. *Annals of Biology*, **25**(2), 105-111.

Majumder, S., T. Shankar, S. Maitra, R. Adhikary, and M. Sairam. (2023). "Effect of Nutrient Omission on Growth and Productivity of Rabi Rice." *Crop Research* **58**, 129–135.

Malewar, G.V., Katem, S.D., Waiker, S.L. and Ismail, S. (2001). Interaction effect of zinc and boron on yield, nutrient uptake and quality of mustard (*Brassica juncea* L.) on a Typic Haplustert. *Journal of the Indian Society of Soil Science*, **49**, 763-766.

Paramasivan, M., Malarvizhi, P. and Thiyyageswari. (2012). Balance use of fertilizer on maize (*Zea mays* L.) yield, nutrient uptake and soil fertility inalfisol. *Karnataka Journal of Agricultural Science*, **25**(4), 423-426.

Sherchan, D.P., Uperti, R. and Maskey, S.L. (2004). Effect of micronutrients on production of maize in the acid soils of Chitwan Valley, pp. 169-180.

Singh, R.N., Singh, S. and Kumar, B. (2006). Interaction effect of sulphur and boron on yield, nutrient uptake and quality characters of soyabean (*Glycine max* L.) grown on acidic upland soil. *Journal of the Indian Society of Soil Science*, **54**, 516-518.